Conditioning and procedures of Climatic Textiles Testing

Before proceeding with a climatic test, it is extremely important to understand the scope of the test to be performed and the kind of material to be tested. After making sure of that, there are some precautions to have in mind and the settings of the climate chamber to be set.

In this specific case, we will focus on a climatic textiles testing.

Given the type of material, you should take into account, before starting the climate test, that we cannot run it before making sure that we are matching with an official procedure.

The ISO 139 standard regulates weathering textiles testing and clothing material.

It specificates that samples should be put in a normal environment (Standard Atmosphere) for a fixed time, according to the type of textile to be tested.

Climatic textiles test conditions

Before proceeding with a climatic textiles test, there are some conditions that the ISO 139 reference standard establishes, in order to have reliable final test results.

The standard lays down climatic conditions and the limits under which the sample must be tested. Often, textile testing laboratories perform part of the test with unreliable equipment.

The FDM climatic chambers, are designed to perform these tests all in only one environment.

The textile material weathering testing is completed within the climatic chamber. So it is not necessary to move the sample several times, risking to lose the final report reliability.

Standard Atmosphere

The Standard Atmosphere means fixing starting climate conditions under which the textile sample is exposed before proceeding with the actual test.

The environmental temperature to be set on the climatic chamber must be 20° C, while the relative humidity must be 65%.

The period of sample exposition to the standard atmosphere, is determinate the weather resistance in according to material type and is defined by the reference standard

Variation limits

During the testing process, the environment where the samples will be tested must not deviate from the ISO 139:2005 limits.

In fact, the temperature can vary to a maximum of ± 2°C, while the relative humidity to a maximum of ± 4%.

These two limits can be directly set from the chamber’s controller, that constantly monitors the two parameters, also thanks to sensitive temperature and humidity probes.

Final result tolerances

Even in case the test procedure is followed step by step, there will always be external agents that will affect test results.

According to the BRITISH STANDARDS – specifically the BS4194: 1967 norm – a climate textiles test allows two types of tolerances:

Tolerance 1. Temperature ± 2 ° C, Relative humidity ± 5%

Tolerance 2. Temperature ± 1 ° C, Relative humidity ± 2%

It differs in type of test that will be performed.

Climatic Chamber Requirements

Now you can focus on the main component: the climatic test chamber. There are three main factors to keep in mind:

⦁ temperature variation rate

⦁ internal dimensions of the chamber

⦁ product to be tested

Temperature variation rate

The first thing to consider with any test chamber is the temperature, in particular the available temperature range and the temperature variation rate.

A standard chamber varies from -25 °C to +70 °C but the most performing ones can reach a wider temperature range.

The temperature variation rate is a fundamental parameter for a successful test. This value proves the performances and reliability of a climatic chamber and should not exceed ± 0.2/0.3 °C.

FDM test chambers are way more than performing, with an internal temperature variation of just ± 0.1 °C.

The internal dimensions of the chamber

You should also consider the internal dimensions of the chamber, which is among the most commonly overlooked factors.

In order to obtain accurate results, the chamber must have sufficient airflow in relation to the overall dimensions of the tested samples.

It is always a good idea to buy a slightly bigger test chamber than you think may be enough for your tests.

The product to be tested

Also the type of material to be tested will determine what kind of chamber to choose.

FDM guides customers in choosing the right climate chamber, according to the required test.


Please note that the chamber must be correctly calibrated in order to provide accurate results.

Climatic Textile Testing Procedure

First of all, check the ambient temperature where the climatic chamber is located, and check if the operating temperature match the data declared by the manufacturer.

Prepare and check the calibration of the temperature and humidity recording probes (usually it is performed at least once a year).

Place the samples so that the air has access to all surfaces. Distribute the textyle surfaces, only one layer per shelf.

Begin the preconditioning procedure (the Standard Atmosphere). Usually a sufficient time for preconditioning is reached after four hours at 20 °C and at 65% relative humidity.

Unless otherwise specified, yarns, threads and similar materials have to be displayed in skein form.

The tests will take up to eight hours for the animal or viscous fibers and only two hours for the fibers with a recovery of less than 5% with a humidity of 65%.

Heavy fibers take more time.

If a fabric contains more than one type of fiber, then you should take into account a longer conditioning time (find the component that takes longer to condition and run the test in that period).

Final test report

Last step is preparing your test report.

The test report includes all processes, materials and procedures of the tests. It shows the conditions from each phase, so that you can understand why a material reacted in a certain way and make your inferences.

In general, the report should include:

  1. subdivision of the tested material
  2. equipment used
  3. test conditions
  4. procedure
  5. results
  6. critical results
  7. final observations

The importance of calibrate a Climatic chamber

A change in temperature even by a degree can have a serious impact on industrial products, biological devices, automotive products, and electronics.

Temperature testing for certain products is vital particularly in the aviation industry. It is vital to calibrate a climatic chamber regularly.

This guideline will explore several advantages of calibration, we’re going to analyze:

  1. how the calibration should be done
  2. the frequency of the calibration
  3. factors to consider in choosing a calibration lab
  4. parameters to be considered in the calibration

What the Advantages of Calibrate a Environmental Chamber?

Overtime, the calibration of an environmental chamber will change, just like expected of every other measuring device. The only way to maintain its accuracy and enjoy the full benefit is by constant calibration. Some of the benefits of calibrate a climatic chamber:


  • Precision
    Frequent calibration helps to maintain the accuracy of environmental chambers. So can help to eliminate the risk and potential harm that may result from incorrect measurements.
  • Consistency
    If a test instrument isn’t right calibrated, it can display inconsistent readings on a device. This makes it difficult to arrive at a conclusion.
  • Reliability
    If the calibration of it is not reliable, the results obtained will also not be reliable.
  • Adherence
    Calibrated instrument ensures that an instrument is in compliance with industrials and government standards and can be safely used.
  • Traceability
    Each time an environmental chamber is calibrated, paper documents are left behind. This will help in tracking the drift of this instruments as well as help in creating a proper calibration interval.


The Frequency of calibrate a Climatic chamber

The main aim of calibrating is to ensure accuracy and reliability of your equipment. Constant use of measuring instruments exposes them to wear which affects their performance.

To maintain the overall efficiency of an environment chamber, calibration needs to be done as frequently as possible. The frequency of calibration of an environment chamber will depend on the following factors:


    • Manufacturer recommendation
      Manufacturers of environmental chambers usually provide information on when and how the instrument should be calibrated. This can provide the basis for calibration but other factors needs to be considered to develop the right frequency:


    • Before or After a Large Project
      It is vital to ensure that an environmental chamber is working optimally before starting a big project. Also, that has been used for major projects for an extensive period should be calibrated. This is because frequent heavy use can affect accuracy and performance.


    • Duration and Amount of Use
      Ideally, the duration and amount of usage should determine the recalibration of an environmental chamber. This means recalibration should be personalize and vary from equipment owner to another.


    • Equipment Trauma
      Equipment trauma is almost unavoidable and the most common with environmental chamber. It’s internal overload usually resulting from high volume of use. Once there is an overload, it is important to recalibrate it before further use.

All the aforementioned criteria should be put into consideration when developing the calibration schedule. It is vital to maintain the accuracy of test instruments because it can compromise safety of devices. In the long run, calibration failure is more costly compared to regular calibration.


Read also: What is an environmental chamber used for?


What should be included in calibration service

When looking for a calibration provider ensure they offer all-in-one service. For quality calibration, it is important to include the following items in calibration;


      • Accurate Measurement Testing
        The aim of calibrating is for guaranteed accuracy and reliable outcome. When choosing a provider for your calibration make sure they have accurate measurement testing.
      • Uncertainty Ratio Measurement
        Your selected provider should be able to evaluate the measurement uncertainty ratio of your environmental chamber. The knowledge of the uncertainty ration of your environmental chamber is important for calculating the accuracy of your measurements. You will also be able to determine change in performance of your environmental chamber.
      • Traceability Measurement and Calibration
        Traceability is key for reliable calibration but is mostly taken for granted. When calibrations and measurements are traceable, they can be traced back to national standards for highest quality.
      • Calibration Certificate
        A quality calibration service provider will give you a calibration certificate. This document has calibration information and serves as a proof that your equipment is properly calibrated.
      • Choosing a calibration lab
        Competence and compliance to highest standards should be your priority when looking for a lab for calibration of your environmental chamber. The following guidelines will help you in choosing a provider.

Accredited Calibrator VS Non-Accredited Calibrator

Both accredited and non-accredited labs can provide calibration services. However, it is important to understand what accreditation means. A respected calibration lab is accredited when it has passed the criteria, which include lab environment, personnel, and traceability. Choosing an accredited lab guarantees the correctness of the calibration service you receive.

Advantages of Choosing Accredited Lab

      • Confidence in calibration outcome
      • Technically competent staff
      • Equipment traceability
      • Supervised lab environment
      • Required measurement uncertainty.

Accredited calibration labs are required to meet highest industrial standard, ISO/IEC 17025

What Is A Growth Chamber And How Does it Assist Your Research?

Growth chamber assist you in the Research

When you think of great people throughout history, who comes to mind?

Most people would think of Albert Einstein, Mother Theresa, Charles Darwin, or Nelson Mandela. Those are great choices, but we’re going to pick one person that we believe beats them all. We pick Norman Borlaug.

You might not know who Norman Borlaug is, and that’s a shame. Mr. Borlaug, using agricultural research, saved a billion lives.

Dr. Borlaug produced a high-yield and disease-resistant strain of Mexican wheat that helped avert a global food crisis in the 1950s and ’60s. His example led to the development of new agricultural research tools, including the plant growth chamber.

What Is A Plant Growth Chamber?

Growth chambers allow researchers to control the environmental conditions when studying plants. Researchers, biologist, and other professionals can control humidity, temperature, light, and other factors.

Growing chambers help plant pathologists fight disease and geneticists develop sturdier food crops. They provide indispensable data for seed germination that the next Norman Borlaug will use to fight off the future food crises.

How do plant growth chambers achieve this? Let’s look at how they benefit agricultural research.


Reproducibility is one of the fundamental elements of experimental science.

A study’s reproducibility is the ability for other researchers to duplicate experiments. This allows others to either confirm or falsify the original study.

Growth chambers do this by allowing researchers to set certain variables during their test. Another researcher can then match these variables to determine whether the same result occurs.

Without growth chambers, there could be variation in other factors that are outside of a team’s control. Small factors, such as an additional few moments of sunlight a day or air composition can cause dramatic variations in results.

Environmental growth chambers ensure equal factors during the verification process. Of course, this relies on the previous team’s record keeping. If there aren’t proper records, the second study will falsify the data and can then work on a solution.


Let’s say that the second study does falsify the original study. If they choose too, they can make adjustments to the factors presented in the first study to see if they can reach similar results. Other researchers can then attempt to reproduce these results and validate the new study.

Researchers can also improve the results from the first study due to the variability provided by plant growth chambers. If the first study shows a 3% improved yield, the second group might make an adjustment that improves yield by 5%.

This research could lead to other breakthroughs, improving access to food for people in non-ideal growing areas.

Testing For Less Than Ideal Growing Regions

One of the largest concerns for agricultural scientists is the lack of farmable land. Many countries across the world face shortages in farmland in the near future. This problem, along with a lack of skilled farm labor, climate change, and a booming worldwide population points to an impending food crisis.

In the UK, it’s expected that there will be a shortage of farms by 2030. In Africa and other parts of the world, the problem isn’t a lack of land, but a lack of arable land. Experts believe that the world’s population will grow to 11.2 billion people by the mid-2030s.

The population explosion will lead to a shortage of resources, in particular food. Earth is an isolated system, leaving us with two options:

  1. People could stop reproducing. This has yet to happen in humanity’s history, so it’s safe to assume that people aren’t going to stop having kids.
  2. We can make better use of the land we have.

Growing chambers allow researchers to develop high-grain products that use less land and produce more food. They also help to determine what regions of the world produce the best of a certain crop.

In the future, it’s almost guaranteed that food production will take a global approach to meet the needs of humanity. Certain nations will grow food for the sole purpose of exportation while importing others. We’ve seen the beginnings of this approach over the past 50 years, and that trend should continue.

Growth chambers allow researchers in the United States to test the viability of crops in Asia and Africa, and vice versa. This research is currently our best hope of staving off a food crisis that could lead to millions, if not billions, of people starving to death.

A Growth Chamber Helps You Make And Test Predictions

The hallmark of a good theory is the ability to make predictions about future events. In the case of agricultural science, this occurs by predicting such things as yield and survivability.

In the past, a scientist would develop a new type of grain that they believed could survive a shorter growing season. They would then have to test their crop in the real world. If their grain didn’t survive, it meant years of wasted work and hungry mouths to feed.

Now, scientists can make a prediction and use growth chambers to simulate a shorter growing season. If the prediction doesn’t hold true, they can begin working on a solution immediately.

This type of dynamic research leads to the creation of new crops. Researchers can adapt to changing climate patterns and other conditions. Water shortages could have devastated communities in the past. Now, we are able to plan ahead through the use of growing chambers and the variability they afford.

Let Us Help You Innovate The Way Food Grows

We offer a wide range of products that meet the needs of biologists and researchers around the world. We’ve designed our products to give you the adaptability and reproducibility you need to improve your research.

Whether you’re in an independent lab, corporate setting, or educational institution in need of a growth chamber, our products are perfect for you. We can produce ICH test chambers with any light source, providing you with further flexibility.

If you have any questions, contact us today and our team will reach out to you!

How does environmental chamber work?

Environmental chamber: how does it work?

An environmental chamber is an enclosed space in which various environmental conditions such as heat and humidity can be controlled. Some chambers even account for corrosion through the introduction of salt spray into the chamber.


The size of these chambers can vary widely depending on the product that needs to be tested. Sizes can vary from a cubic foot to up to 12,000 cubic feet, which is large enough to drive a truck into!


What is an environmental chamber used for? The main function of environmental test chamber is to see how products handle operating in various environments. For instance, a car that runs very well in dry climates may stop working in humid environments.


Environmental chambers allow product manufacturers to test their products under a wide range of controlled conditions without having to physically travel all over the world. Environmental chambers that have been properly calibrated can generate reliable results that reflect real-world product performance.

So how do environmental test chambers work?

The environmental chamber working principle is that all conditions can be controlled manually through a variety of mechanical processes. Temperature is controlled via electric resistor to either heat or refrigeration unit to cool the chamber.


To simulate the corrosive effect of living close to the sea, a salt solution is sprayed through a nozzle into the chamber, creating a fine mist that coats the entire product.

Humidity in the test chamber can be simulate by two different methods: evaporation of water with a heat source or with ultrasound technology.


Water vapor is usually introduced into a test chamber via a steam generator which heats the water and creates steam.

The steam rises to the top of the chamber, where it is cooled down again, raising the total humidity in the test chamber.

This method is useful because it can generate high humidity in large chambers very quickly. The drawbacks are that it’s a very energy intensive process that can also affect the temperature inside the test chamber.



Ultrasonic humidifiers don’t rely on heat to turn water into steam. Water vapor is created by running water on a diaphragm that vibrates at ultrasonic frequencies.

The droplets formed by this method are extremely thin and can evaporate rapidly in the air in the test chamber.

This humidified air is then transferred to the test chamber.

The system used in the FDM test chambers is more efficient than heating system.


The main advantages of ultrasound system are:

– Greater performance in humidity producing
– Increased energy efficiency
Silent system during operation
Cold operation, so it does not produce further heat
Immediate production of humidity


To ensure that the tests of products are accurate, manufacturers must know how to how to calibrate environmental chambers.

If you want to know how is important to calibrate it, check this article.

Proper calibration of test chambers is essential to reliable and consistent results. Various environmental chambers will have different calibration processes, depending on how the environmental chambers work and what industry the chamber is being used in, so it’s vital to contact the manufacturer of the chamber to find out what the correct procedure is before starting the calibration process.

How to grow Arabidopsis thaliana


Growing Arabidopsis plant is highly influenced by climatic conditions but with some pro tips and the correct controlled conditions, you can get awesome results. Read on to find out the best method to grow Arabidopsis thaliana.

What is Arabidopsis thaliana plant?

Arabidopsis thaliana was the first plant to have the genome sequenced because it is a rare case of a small one of approximately Mbp (Megabase pairs). Other than that, Arabidopsis thaliana is a small plant with white flowers that is native to the Eurasia zone.


Arabidopsis growth

The Arabidopsis can be grown in a wide variety of mediums like greenhouses, growth chambers and rooms, outdoors and in lighted shelves. If the growth method is properly applied and the maintenance plan is carefully followed, it enables the plant to produce seeds at a high rate. Also, it is considered a requisite for reproducible and accurate research.

Arabidopsis plant growth conditions

After three to five days of being planted, the seeds of most lines germinate. In a continuous lighting, water and nutrition and an approximate temperature level of 23°C, the first flowers can be expected within four to five weeks and seed harvesting in eight to ten weeks.

It is expected that environmental conditions in natural habitats create different phenotypes than in recreated ambient situations. It is important to bear this in mind when studying differences between them.

Specific light

There are various ways to assist the Arabidopsis in its growth from a photoperiod point of view.  The most recommended intensity is 120-150 µmol/m2sec. Although it can take more power, they might start to show purple leaves as a sign of too much light as one of the determining stress conditions that can lead to death.

Optimum temperature

The optimum temperature for the Arabidopsis to grow at its best is 22-23°C. It is not recommended to exceed the temperature range for Arabidopsis nor should temperatures dip below 16°C, especially in the early stages of growth. Older plants, which have passed the Rosette stage are able to withstand heat better than younger plants. At lower temperatures the plants are known to enter a vegetative state which delays flowering. Certain winter-annual variations of the plant, however, do require a period of cold in order to initiate the flowering process. Many of the young rosettes usually aged between 2 and 4 weeks, of the winter variations of the plant require being placed at 4°C for one to two months to accelerate the flowering process.


Keeping humidity uniform at around 50-60% is optimum for healthy plant growth. The relative humidity is a crucial influencer for the plant´s water needs. If the relative humidity is too high, above 90%, the most likely result is plant sterility. Some growers utilize low relative humidity, below 50% to achieve silique maturation.

Custom plant growth rooms

In most commercial growth facilities, it is easy to precisely control photoperiod, temperature, light intensity and often humidity too. Standard rooms can be equipped with additional temperature, ventilation, air conditioning, and lightning supplement growing conditions but are not as accurate as custom rooms. Greenhouses, on the other hand, can offer such services but are exposed to higher temperature deviations because of sunlight exposure. If the facility that is to be used for the growth of Arabidopsis was used with another species before, it would have to be cleaned to zero to avoid the use of pesticides or the loss of healthy plants because of infestation or pest.

Preservation of Arabidopsis seeds

The Arabidopsis small seeds rehydrate in a very rapid manner when they are exposed to any source of high humidity. If they happen to deteriorate, they lose vigor and if the process is not stopped, they lose the ability to germinate at all. The correlation between moisture, temperature and other unknown factors of cellular order determine the ´aging´ of the seeds. Seeds from Arabidopsis lines historically showed strength and viability for long periods of storage if the conditions are properly maintained.

When the seeds are exposed at the ambient relative humidity and at room temperature, they lose viability in approximately a span of two years. However, if the temperature is of 4°C to -20°C, the dried seeds can be stored for decades and remain as vigorous as the first day. The humidity of the 4°C controlled-room for storage should be somewhere between 20-30% to ensure seeds are not rehydrated. If the goal is to store the seeds for longer periods of time (more than five years), sub-zero temperature and a maximum of 20% relative humidity.

This is the latest and portable environmental chamber that FDM realized for specific customer needs. It’s a next generation device configured with multiple advanced features realized for testing the samples with varying weathering conditions. This small environmental chamber version (40C180V25) is a ‘PID (Proportional Integral Derivative)’ regulation device that can be used for ‘stability’ testing conditions. Alternatively, it can be equipped with programmable controller for cycling test; in this case we can manipulate the temperature and humidity making the testing much more dynamic. The specimen can be easily subjected to multiple environmental parameters with its advanced attributes.


We realized this machine according to the specifications provided by the customer. Also, they required us to realize the machine with smallest possible size, easy to transport to operate in multiple laboratories. This portable environmental chamber is configured for a specific customer who requested us to resolve a particular test condition and transportability. This environmental chamber consists of numerous benefits, which makes it a ‘stand out’ with respect to its ‘attributes’. We have the required skills to help them, and we did it!

This Environmental Chamber Consists of The Following Attributes:

  • Vast weathering range, with temperature ranging from -40°C to +180°C and humidity varying from 30% to 98% rh with a fluctuation range of less than 3.
  • Material used to manufacture this device is of very high quality. The exterior portion is made of ‘white coated galvanized steel’ and the interior is made of ‘AISI 304 stainless steel’.
  • Device is free insulated from CFC and HCFC.
  • Its interior consists of steel grid which are removable and height-adjustable as required.

It is basically a single-shelve environmental chamber, with its interior and exterior dimensions suitable to categorize it as ‘Portable’ as it weighs only 80kgs.

Exterior Dimensions Are [mm]:

  • Width – 444
  • Depth – 695
  • Height – 690

Interior Dimensions Are [mm]:

  • Width – 300
  • Depth – 235
  • Height – 295


check here the full technical sheet

With this portable environmental chamber you have much interior space available, it can be subjected to any specimen of volume up to 25 liters, which is quite impressive with respect to its attributes.

Electrical Parameters Configured in Portable environmental chamber:

  • Energy consumption at 37°C is 0.5[kWh/h]
  • Voltage capacity is 220/240V
  • Power Frequency of 50 Hz
  • Nominal Power of 1 kW and Nominal Voltage (Phase) of ‘1-‘
  • Unit Fuse of 16 A

Feature that makes this one of its kind are the safety measure taken into account to meet our customers request, it is immune to every unwanted mishaps that may occur during testing period. Those safety measures consist of:

  • Constant Monitoring Controller: This reduces the chance of any unfortunate events to minimal.
  • High Alarm & Security Feature: In this feature, the audio-visual alarm sets off whenever the temperature becomes too ‘HOT’ for the testing specimen.
  • Security Device with manual reset Class 1(DIN 12880).

To summarize: it is small and portable, can be operated in any given conditions because of its ‘dynamic’ features. In others words, a smart environmental chamber.


As demand for electronic components, especially semiconductors, continues to grow rapidly, one of the challenges the industry faces, is the time taken to test those components. Traditionally, Temperature Humidity Bias testing, THB for short, has been the solution, but with that taking 1000 hours to complete it represented a significant delay, and this is where HAST testing, Highly Accelerated Temperature and Humidity Stress Test, offers significant advantages.

Taking between 96 and 100 hours per test, and often even less, the HAST test provides significant time savings that can have significant impact on business, and so has quickly become the most dominant of the endurance test methods for semiconductor devices. While primarily connected with semiconductor testing, HAST testing is used on a variety of both hermetically sealed and unsealed compact electronic components to provide fast testing results for a variety of situations and needs.

HAST testing standards

Time Is not the only difference, THB testing holds 85°C/85% R.h. condition as the samples are subjected to bias loads, however this has become less relevant today due to advances in the materials used in packaging and passivation.

By contrast, HAST test conditions use a high temperature of at least 100°C and usually around 105°C along with high relative humidity of around 85% in combination with high atmospheric pressure of up to 4 atmospheres. There is also a saturated version of the HAST test that uses 121°C temperature and relative humidity of 100%. If components are tested with power on, it is usually the unsaturated version with 85%RH. These environmental parameters provide an accelerated method of component reliability testing that quickly finds concealed defects that could result in failure during long-term use.

There are several standards for HAST tests from the IEC, JESD, JIS and JEITA, all indicate different combinations of temperature and RH, and are used for different situations. The most common are:


  • IEC 60068-2-66 – used in non-hermetically sealed, compact electronic components
  • IEC 60749-4 – Mainly used for semiconductors
  • JESD020C – Reflow soldering
  • JESD22-A104DTemperature Cycling testing to cover component and solder interconnection testing
  • JESD22-B102E – Tests for accelerated moisture resistance, unbiased autoclave
  • JESD22-A108BHigh Temperature Operating Life (HTOL) test
  • JESD22-A102C – Used for accelerated humidity resistance testing of non-hermetically sealed semiconductor-based devices
  • JESD22-A110C – Used for non-hermetically sealed semiconductor-based devices while powered to evaluate reliability
  • JESD22-A118 – Evaluates the reliability of unpowered non-hermetically sealed semiconductor-based devices
  • JIS C60068-2-66 – For testing compact electronic components
  • JEITA ED-4701/100 Method 103Tests the durability of semiconductors that are stored or used within high temperature and humidity-based atmospheres


Hast testing in practice

The Hast highly accelerated stress test uses dedicated design test chambers that are rapidly being deployed to replace existing THB testing chambers that use wet bulb/dry bulb mechanisms to control humidity accurately and consistently. That constant temperature/humidity chamber under high pressure is key to delivering faster results in all conditions.

HAST testing is particularly useful during product changes where adjustments could potentially accelerate metal corrosion, with results being obtainable so much faster than alternatives and as a result having a significant impact on development times. HAST testing is the best option for testing for any kind of moisture driven corrosion, with its testing capabilities providing shock accelerated conditions that provide a true test of components.

The ability to provide full tests of all components, evaluating insulation deterioration, overall performance including the performance of plastic sealed components in a variety of conditions, including through a vibration test, the HAST approach delivers the true shock test that gives a real insight into overall performance of the product.



With its flexibility and intensity providing a variety of test results in a short space of time, HAST testing is well positioned for the modern production cycle. Crucially, the HAST testing process allows both saturated and unsaturated testing of components within the test cycle, and for plastic sealed components or others designed to be environmentally sealed, it provides a more streamlined, more effective outcome that enhances product development processes considerably.

Whatever testing standards are used, the ability to have tests completed in days, rather than months creates new opportunities for product development. By powering the agile testing process organizations are able to deliver faster responses to changing production needs, improving performance and delivering increased user satisfaction.

FDM at Achema Fair 2018

ACHEMA, takes place from 11th to 15th of June 2018 at the Messe Frankfurt (Germany). Focal Topics are: Chemical engineering, Materials and material processing, Pharmaceutical and Laboratory technology. The ACHEMA is largest world forum for chemical engineering and process industry, with more than 3.800 exhibitors which present the last innovations whole chemical and pharmaceutical industry.

This year the topics of ACHEMA will be Biotech for Chemistry, Flexible Production and the Chemical and Pharma Logistics.

Visit our booth at ACHEMA in hall 4.2 | booth K18 and get an insight in our wide range of products. Here you can find out more about our Stability Chambers, Ultra Low Freezers and you’ll can configure your custom chamber with FDM staff.


We’ll be pleasure invite you as guests at our stand!

Contact us for tickets or an appointment: Click here

FDM Achema Fair

How does an ultra low freezer work


Ultra low freezer: how does it work?

What is an Ultra freezer?

The Ultra freezer is one of the main tools used in research laboratories. The ULT freezer safeguards biological samples important for research being carried out in laboratories, by keeping them at very low temperatures. The operating temperature can range from -45° C to -89° C. Several characteristics is determining the ultra low freezer reliable. We are able to resume it below, thanks to our 50 years collaboration with the most important laboratory researchers.



Two versions are generally available: upright freezer or chest freezer with access from above. The most common one is the upright version, as laboratories are increasingly looking to save space to make it easier to move around.



The internal storage volume of the low temperature freezer can also differ. It can start from an internal capacity of 200 litres up to a maximum capacity of 800 litres. Some manufacturers sometimes can make a customized volume.



The Ultra freezer has shelves on the inside where research samples are placed. Each shelf is closed by an internal door so as to maintain the temperature as uniform as possible on the shelves where no sample is removed or placed.



The insulation is not trascurable characteristic of 86 c ultra. It is necessary to keep the cold stored inside the cabinet, between the external and internal walls. This polyurethane insulation is free of polluting substances. The high insulation coefficient is determining to keeps the temperature stable inside the cabinet for several hours.




The gasket seal is positioned long entire perimeter of the freezer cabinet. It is works to seal the freezer cabinet when the access door is closed. The most efficient ones are silicone quadruple-step seals, which guarantee even greater temperature stability.


Access door

The main access door, also insulated with polyurethane, guarantees the highest degree of coldness and is blocked by an external closure generally fitted with a safety key.



For guarantee more practical move inside the laboratory, the freezer are equipped with swivel castors at the bottom.



The best freezers are equipped with electronic PLC controller, and a display that indicates freezing parameters. The entire control system is generally equipped with a back-up battery, which ensures the digital temperature display works even when there is a power failure.






How does the refrigerator circuit of an ultra freezer work?

The refrigeration systems can be a single high-power compressor hermetically sealed or two cascade compressors.


The two cascade solution, is two refrigeration circuits connected so that the evaporator of one cools the condenser of the other, facilitating the condensation of the compressed gas in the first circuit.


Air-cooled condensers are generally used in laboratory refrigeration systems, consisting of tubular batteries (copper or copper-aluminium) arranged to provide as much surface heat transfer as possible.


In Ultra freezers, the circulation of the cooling air is forced by an engine driven fan and the expansion of the refrigerant fluids is obtained by capillary tubes.


Evaporation takes place through steel plate heat exchangers, located inside the chamber, or by means of a coil.


In the chest freezers, the copper or copper-aluminium coil evaporator is placed along the walls and bottom, while in the upright freezers it runs along the walls and at the top. The coil in the cabinet eliminates the problems of efficiency in the heat exchange of freezers with the coil in the insulation cavity.


Coolant fluids used in the ultra low temperature freezers

Refrigerant fluids are selected from gaseous chemical compounds that can easily be liquefied and characterised by certain properties such as high critical temperature and low critical pressure, limited hazard and toxicity.


They are indicated by the letter R followed by a number that refer to the molecule’s atoms.

Each refrigerant system must be sealed and contain eco-friendly refrigerant HFC gas, free from CFC and HCFC as well as being non-explosive, non-flammable and non-toxic.


The most efficient, environmentally friendly refrigerant fluids used in ultra freezers are typically R170, R23 and R290.


With the new European Regulation UE 517/2014, the Ultra freezer manufacturers must to follow the guideline to allow its use even after 2030. So they must to use green refrigerants:


R717 (Ammonia)

R744 (Carbon dioxide)

R170 (Ethane)

R290 (CARE 40) Propane

R600a (CARE 10) Isobutane

R1150 (Ethylene)

R1270 (CARE 45) Propylene



Which accessories can Ultra Freezer have?

The accessories generally supplied include:


a CO2 and / or LN2 emergency system (both with independent power supply, probe and battery).


To track room temperature, freezers are optionally equipped with a weekly charted temperature recorder, which has almost completely been replaced by digital ones.

In line with current international standards, the recorder is compulsory for freezers at -45° C and -86° C for the storage of blood products.


Other accessories include: various kinds of steel containers, drawers and racks for storage of cryoboxes, microplates, blood bags and test tubes designed for low and very low temperature storage.


Handling goods inside the ultra freezers requires you to wear suitable protective headgear, leather gloves to protect your hands and overalls and smocks to protect your body.

Stability testing

Stability testing for validation of pharmaceutical products that meet ICH Q1A

The stability testing is a procedure for products validation that meet different standards. The stability chambers are the best equipments for stability studies, and application of use are: Pharmaceutical Products/Packaging; Medical Products/Packaging; Personal Care Products; Consumer Products and Research. This stability chamber can ricreate an ideal environment with temperature, humidity and illumination that are need for test. Temperature range is 0°C to +70°C, humidity range is 10% RH to ±90% RH and the illumination meet ICH Q1A pharmaceutical stability guidelines for different conditions. The pharmaceutical testing require an controller that install the CFR 21 software that meet FDA 21 CFR part 11 compliant. The stability testing is used also for accelated aging test, in order to speed up its aging process on the differents temperature, humidity and lighting conditions.

Read our page dedicated to material test chamber!

FDM Stability chambers provide a uniform, temperature/ humidity conditioned environment for worry-free operation with a control system that is easy to use and saves time. These chambers are ideal for ICH Q1A pharmaceutical stability testing, shelf life, package testing, accelerated aging, and more. The Constant Touch Screen Controller is compliance with FDA regulation 21 CFR part 11 for ERES (Electronic Records and Electronic Signatures). The controller is designed to simplify chamber operation including data logging, ethernet control and monitoring from any device, alarm notification via email and/or text message, data fi le backup, full system security, audit trail, digital signatures, power recovery options, and more.

Stability testing – strong points:

  • Temperature range 0°…+70°C
  • Temperature stability of ±0.1…0.5°C
  • Control relative Humidity 10% to 90% ±3%
  • Constant controller touch screen with CFR 21 software
  • Data logging with network connection
  • Inner lexan door with differents compartments
  • IQ/OQ certifi cations included
  • GSM Module (optional)
  • Best quality component for a long-term simulation
  • Made in Italy Design and Product

ICH Q1A stability testing

Stability testing structure:

  • External manufactured completely in white plastic coated galvanized steel and internal in stainless steel AISI 304
  • Polyurethane insulation CFC and HCFC free
  • Reversible doors fitted with self-closing hinges with stop opening beyond 90° and replaceable magnetic gaskets
  • Inner lexan door for different compartments
  • Inside with rounded corners
  • Plastic-coated steel grids removable and height adjustable
  • Adjustable steel feet

CFR-21 software

CFR-21 Controller:

  • Colour touchscreen display
  • Peer to peer communications
  • Modbus master/slave
  • Profi bus master
  • 10/100Mbps Ethernet
  • Continuous and sequential control
  • Multi-setpoint programmer
  • Batch control
  • Recipes
  • USB support
  • 21 CFR Part 11 auditor
  • Data logging
  • Open communications
  • Alarm management
  • Multi-language support
  • Heat treatment application editor


Need quickly help? Save time by starting your support request online

Product Inquiry

Your request*

First name

Last name

Your email*

Company / Organization*


Your message*

* I have read and accept the Privacy policy.
I would like to receive announcements, recommendations, and updates about services, software and FDM products.

(*) Required fields